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Abstract

We describe a new approach to automatically repairing bro-
ken proofs in the Coq proof assistant in response to changes
in types. Our approach combines a configurable proof term
transformation with a decompiler from proof terms to sug-
gested tactic scripts. The proof term transformation imple-
ments transport across equivalences in a way that removes
references to the old version of the changed type and does
not rely on axioms beyond those Coq assumes.
We have implemented this approach in Pumpkin Pi, an

extension to the Pumpkin Patch Coq plugin suite for proof
repair. We demonstrate Pumpkin Pi’s flexibility on eight
case studies, including supporting a benchmark from a user
study, easing development with dependent types, porting
functions and proofs between unary and binary numbers,
and supporting an industrial proof engineer to interoperate
between Coq and other verification tools more easily.

CCS Concepts: • Software and its engineering→ Gen-

eral programming languages; • Social and professional
topics→ History of programming languages.

Keywords: proof engineering, proof repair, proof reuse
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1 Introduction

Program verification with interactive theorem provers has
come a long way since its inception, especially when it comes
to the scale of programs that can be verified. The seL4 [20]
verified operating system kernel, for example, is the effort
of a team of proof engineers spanning more than a million
lines of proof, costing over 20 person-years. Given a famous
1977 critique of verification [12] (emphasis ours):

A sufficiently fanatical researcher might be will-
ing to devote two or three years to verifying a
significant piece of software if he could be as-
sured that the software would remain stable.

we could argue that, over 40 years, either verification has
become easier, or researchers have become more fanatical.
Unfortunately, not all has changed (emphasis still ours):

But real-life programs need to be maintained
and modified. There is no reason to believe that
verifying a modified program is any easier than
verifying the original the first time around.

Tools that can automatically refactor or repair proofs [1, 4,
13, 31, 33, 34, 42, 43] give us reason to believe that verifying
a modified program can sometimes be easier than verify-
ing the original, even when proof engineers do not follow
good development processes, or when change occurs outside
of proof engineers’ control [29]. Still, maintaining verified
programs can be challenging: it means keeping not just the
programs, but also specifications and proofs about those pro-
grams up-to-date. This remains so difficult that sometimes,
even experts give up in the face of change [30].

The problem of automatically updating proofs in response
to changes in programs or specifications is known as proof
repair [29, 31]. While there are many ways proofs need to be
repaired, one such need is in response to a changed type defi-
nition (Section 3). We make progress on two open challenges
in proof repair in response to changes in type definitions:

1. Existing work supports very limited classes of these
changes like non-structural changes [31] or a prede-
fined set of changes [33, 43], and these are not in-
formed by the needs of proof engineers [30].

https://doi.org/10.1145/3453483.3454033
https://doi.org/10.1145/3453483.3454033
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2. Proof repair tools are not yet integrated with typical
proof engineering workflows [29, 31, 33], and may im-
pose additional proof obligations like proving relations
corresponding to changes [32].

The typical proof engineering workflow in Coq is interac-
tive: The proof engineer passes Coq high-level search pro-
cedures called tactics (like induction), and Coq responds to
each tactic by refining the current goal to some subgoal (like
the proof obligation for the base case). This loop of tactics
and goals continues until no goals remain, at which point the
proof engineer has constructed a sequence of tactics called a
proof script. To check this proof script for correctness, Coq
compiles it to a low-level function called a proof term, then
checks that the proof term has the expected type.
Our approach to proof repair works at the level of low-

level proof terms, then builds back up to high-level proof
scripts. In particular, our approach combines a configurable
proof term transformation (Section 4) with a prototype de-
compiler from proof terms back to suggested proof scripts
(Section 5). This is implemented (Section 6) in Pumpkin Pi,
an extension to the Pumpkin Patch [31] proof repair plugin
suite for Coq 8.8 that is available on Github.1

Addressing Challenge 1: Flexible Type Support. The
case studies in Section 7—summarized in Table 1 on page 11—
show that Pumpkin Pi is flexible enough to support a wide
range of proof engineering use cases. In general, Pumpkin Pi
can support any change described by an equivalence, though
it takes the equivalence in a deconstructed form that we call a
configuration. The configuration expresses to the proof term
transformation how to translate functions and proofs defined
over the old version of a type to refer only to the new version,
and how to do so in a way that does not break definitional
equality. The proof engineer can write this configuration
in Coq and feed it to Pumpkin Pi (manual configuration in
Table 1), configuring Pumpkin Pi to support the change.
AddressingChallenge 2:Workflow Integration.Research
on workflow integration for proof repair tools is in its in-
fancy. Pumpkin Pi is built with workflow integration in mind.
For example, Pumpkin Pi is the only proof repair tool we are
aware of that produces suggested proof scripts (rather than
proof terms) for repaired proofs, a challenge highlighted in
existing proof repair work [31, 33] and in a survey of proof
engineering [29]. In addition, Pumpkin Pi implements search
procedures that automatically discover configurations and
prove the equivalences they induce for four different classes
of changes (automatic configuration in Table 1), decreasing
the burden of proof obligations imposed on the proof en-
gineer. Our partnership with an industrial proof engineer
has informed other changes to further improve workflow
integration (Sections 6.1 and 7).

1We annotate each claim to which code is relevant with a circled number like
1 . These circled numbers are links to code, and are detailed in GUIDE.md.

Figure 1. The workflow for Pumpkin Pi.

Bringing it Together. Figure 1 shows how this comes to-
gether when the proof engineer invokes Pumpkin Pi:

1. The proof engineer Configures Pumpkin Pi, either
manually or automatically.

2. The configured Transform transforms the old proof
term into the new proof term.

3. Decompile suggests a new proof script.
There are currently four search procedures for automatic
configuration implemented in Pumpkin Pi (see Table 1 on
page 11). Manual configuration makes it possible for the
proof engineer to configure the transformation to any equiv-
alence, even without a search procedure. Section 7 shows
examples of both workflows applied to real scenarios.

2 A Simple Motivating Example

Consider a simple example of using Pumpkin Pi: repair-
ing proofs after swapping the two constructors of the list

datatype (Figure 2). This is inspired by a similar change from
a user study of proof engineers (Section 7). Even such a sim-
ple change can cause trouble, as in this proof from the Coq
standard library (comments ours for clarity):2

Lemma rev_app_distr {A} :
∀ (x y : list A), rev (x ++ y) = rev y ++ rev x.

Proof. (* by induction over x and y *)
induction x as [| a l IHl].
(* x nil: *) induction y as [| a l IHl].
(* y nil: *) simpl. auto.
(* y cons *) simpl. rewrite app_nil_r; auto.
(* both cons: *) intro y. simpl.
rewrite (IHl y). rewrite app_assoc; trivial.

Qed.

This lemma says that appending (++) two lists and reversing
(rev) the result behaves the same as appending the reverse
of the second list onto the reverse of the first list. The proof
script works by induction over the input lists x and y: In the
base case for both x and y, the result holds by reflexivity. In
the base case for x and the inductive case for y, the result
follows from the existing lemma app_nil_r. Finally, in the
inductive case for both x and y, the result follows by the
inductive hypothesis and the existing lemma app_assoc.

2We use induction instead of pattern matching.

https://github.com/uwplse/pumpkin-pi/blob/silent/GUIDE.md
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Inductive list (T : Type) : Type :=
| nil : list T
| cons : T → list T → list T.

Inductive list (T : Type) : Type :=
| cons : T → list T → list T
| nil : list T.

Figure 2. A change from the old version of list (left) to the new version of list (right). The old version of list is an inductive
datatype that is either empty (the nil constructor), or the result of placing an element in front of another list (the cons

constructor). The change swaps these two constructors (orange).

swap T (l : Old.list T) : New.list T :=
Old.list_rect T (fun (l : Old.list T) => New.list T)
New.nil
(fun t _ (IHl : New.list T) => New.cons T t IHl)
l.

Lemma section: ∀ T (l : Old.list T),
swap−1 T (swap T l) = l.

Proof.
intros T l. symmetry. induction l as [ |a l0 H].
- auto.
- simpl. rewrite ← H. auto.

Qed.

swap−1 T (l : New.list T) : Old.list T :=
New.list_rect T (fun (l : New.list T) => Old.list T)
(fun t _ (IHl : Old.list T) => Old.cons T t IHl)
Old.nil
l.

Lemma retraction: ∀ T (l : New.list T),
swap T (swap−1 T l) = l.

Proof.
intros T l. symmetry. induction l as [t l0 H| ].
- simpl. rewrite ← H. auto.
- auto.

Qed.

Figure 3. Two functions between Old.list and New.list (top) that form an equivalence (bottom).

Whenwe change the list type, this proof no longer works.
To repair this proof with Pumpkin Pi, we run this command:
Repair Old.list New.list in rev_app_distr.

assuming the old and new list types from Figure 2 are in mod-
ules Old and New. This suggests a proof script that succeeds (in
light blue to denote Pumpkin Pi produces it automatically):
Proof. (* by induction over x and y *)
intros x. induction x as [a l IHl| ]; intro y0.
- (* both cons: *) simpl. rewrite IHl. simpl.
rewrite app_assoc. auto.

- (* x nil: *) induction y0 as [a l H| ].
+ (* y cons: *) simpl. rewrite app_nil_r. auto.
+ (* y nil: *) auto.

Qed.

where the dependencies (rev, ++, app_assoc, and app_nil_r)
have also been updated automatically 1 . If we would like,
we can manually modify this to something that more closely
matches the style of the original proof script:
Proof. (* by induction over x and y *)
induction x as [a l IHl|].
(* both cons: *) intro y. simpl.
rewrite (IHl y). rewrite app_assoc; trivial.
(* x nil: *) induction y as [a l IHl|].
(* y cons: *) simpl. rewrite app_nil_r; auto.
(* y nil: *) simpl. auto.

Qed.

We can even repair the entire list module from the Coq
standard library all at once by running the Repair module

command 1 . When we are done, we can get rid of Old.list.
The key to success is taking advantage of Coq’s structured

proof term language: Coq compiles every proof script to
a proof term in a rich functional programming language
called Gallina—Pumpkin Pi repairs that term. Pumpkin Pi

then decompiles the repaired proof term (with optional hints
from the original proof script) back to a suggested proof
script that the proof engineer can maintain.
In contrast, updating the poorly structured proof script

directly would not be straightforward. Even for the simple
proof script above, grouping tactics by line, there are 6! =
720 permutations of this proof script. It is not clear which
lines to swap since these tactics do not have a semantics
beyond the searches their evaluation performs. Furthermore,
just swapping lines is not enough: even for such a simple
change, we must also swap arguments, so induction x as

[| a l IHl] becomes induction x as [a l IHl|]. Robert
[33] describes the challenges of repairing tactics in detail.
Pumpkin Pi’s approach circumvents this challenge.

3 Problem Definition

Pumpkin Pi can do much more than permute constructors.
Given an equivalence between types A and B, Pumpkin Pi
repairs functions and proofs defined overA to instead refer to
B (Section 3.1). It does this in a way that allows for removing
references to A, which is essential for proof repair, since A
may be an old version of an updated type (Section 3.2).

3.1 Scope: Type Equivalences

Pumpkin Pi repairs proofs in response to changes in types
that correspond to type equivalences [40], or pairs of func-
tions that map between two types and are mutual inverses.3
When a type equivalence between typesA and B exists, those
types are equivalent (denoted A ≃ B). Figure 3 shows a type
equivalence between the two versions of list from Figure 2
that Pumpkin Pi discovered and proved automatically 1 .
3The adjoint follows, and Pumpkin Pi includesmachinery to prove it 10 23 .

https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/automation/search/equivalence.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/theories/Adjoint.v
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To give some intuition for what kinds of changes can be
described by equivalences, we preview two changes below.
See Table 1 on page 11 for more examples.
Factoring out Constructors. Consider changing the type
I to the type J in Figure 4. J can be viewed as I with its two
constructors A and B pulled out to a new argument of type
bool for a single constructor. With Pumpkin Pi, the proof
engineer can repair functions and proofs about I to instead
use J, as long as she configures Pumpkin Pi to describe which
constructor of Imaps to true and which maps to false. This
information about constructor mappings induces an equiva-
lence I ≃ J across which Pumpkin Pi repairs functions and
proofs. File 2 shows an example of this, mapping A to true

and B to false, and repairing proofs of De Morgan’s laws.
Adding aDependent Index.At first glance, theword equiv-
alence may seem to imply that Pumpkin Pi can support only
changes in which the proof engineer does not add or re-
move information. But equivalences are more powerful than
they may seem. Consider, for example, changing a list to a
length-indexed vector (Figure 5). Pumpkin Pi can repair func-
tions and proofs about lists to functions and proofs about
vectors of particular lengths 3 , since Σ(l:list T).length

l = n ≃ vector T n. From the proof engineer’s perspective,
after updating specifications from list to vector, to fix her
functions and proofs, she must additionally prove invariants
about the lengths of her lists. Pumpkin Pi makes it easy to
separate out that proof obligation, then automates the rest.
More generally, in homotopy type theory, with the help

of quotient types, it is possible to form an equivalence from
a relation, even when the relation is not an equivalence [2].
While Coq lacks quotient types, it is possible to achieve a
similar outcome and use Pumpkin Pi for changes that add or
remove information when those changes can be expressed
as equivalences between Σ types or sum types.

3.2 Goal: Transport with a Twist

The goal of Pumpkin Pi is to implement a kind of proof
reuse known as transport [40], but in a way that is suitable
for repair. Informally, transport takes a term t and produces
a term t ′ that is the same as t modulo an equivalence A ≃ B.
If t is a function, then t ′ behaves the same way modulo the
equivalence; if t is a proof, then t ′ proves the same theorem
the same way modulo the equivalence.
When transport across A ≃ B takes t to t ′, we say that t

and t ′ are equal up to transport across that equivalence (de-
noted t ≡A≃B t ′).4 In Section 2, the original append function
++ over Old.list and the repaired append function ++ over

4This notation should be interpreted in a metatheory with univalence—a
property that Coq lacks—or it should be approximated in Coq. The details
of transport with univalence are in Univalent Foundations Program [40],
and an approximation in Coq is in Tabareau et al. [37]. For equivalent A
and B , there can be many equivalences A ≃ B . Equality up to transport is
across a particular equivalence, but we erase this in the notation.

Inductive I :=
| A : I
| B : I.

Inductive J :=
| makeJ : bool → J.

Figure 4. The old type I (left) is either A or B. The new type
J (right) is I with A and B factored out to bool (orange).

Inductive list (T : Type) : Type :=
| nil : list T
| cons : T → list T → list T.

Inductive vector (T : Type) : nat → Type :=
| nil : vector T O
| cons : T → ∀ (n : nat), vector T n → vector T (S n).

Figure 5. A vector (bottom) is a list (top) indexed by its
length (orange). Vectors effectively make it possible to en-
force length invariants about lists at compile time.

New.list that Pumpkin Pi produces are equal up to transport
across the equivalence from Figure 3, since (by app_ok 1 ):

∀ T (l1 l2 : Old.list T),
swap T (l1 ++ l2) = (swap T l1) ++ (swap T l2).

The original rev_app_distr is equal to the repaired proof up
to transport, since both prove the same thing the same way
up to the equivalence, and up to the changes in ++ and rev.

Transport typically works by applying the functions that
make up the equivalence to convert inputs and outputs be-
tween types. This approach would not be suitable for repair,
since it does not make it possible to remove the old type A.
Pumpkin Pi implements transport in a way that allows for
removing references to A—by proof term transformation.

4 The Transformation

At the heart of Pumpkin Pi is a configurable proof term trans-
formation for transporting proofs across equivalences 4 . It
is a generalization of the transformation from an earlier ver-
sion of Pumpkin Pi called Devoid [32], which solved this
problem a particular class of equivalences.

The transformation takes as input a deconstructed equiva-
lence that we call a configuration. This section introduces the
configuration (Section 4.1), defines the transformation that
builds on that (Section 4.2), then specifies correctness criteria
for the configuration (Section 4.3). Section 6.1 describes the
additional work needed to implement this transformation.
Conventions. All terms that we introduce in this section
are in the Calculus of Inductive Constructions (CICω ), the
type theory that Coq’s proof term language Gallina imple-
ments. CICω is based on the Calculus of Constructions (CoC),
a variant of the lambda calculus with polymorphism (types
that dependent on types) and dependent types (types that
depend on terms) [9]. CICω extends CoC with inductive
types [10]. Inductive types are defined solely by their con-
structors (like nil and cons for list) and eliminators (like

https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/playground/constr_refactor.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/examples/Example.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/automation/lift/lift.ml
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⟨i⟩ ∈ N, ⟨v⟩ ∈ Vars, ⟨s⟩ ∈ { Prop, Set, Type⟨i⟩ }

⟨t⟩ ::= ⟨v⟩ | ⟨s⟩ | Π (⟨v⟩ : ⟨t⟩) . ⟨t⟩ | λ (⟨v⟩ : ⟨t⟩) . ⟨t⟩ | ⟨t⟩ ⟨t⟩ | Ind (⟨v⟩ : ⟨t⟩){⟨t⟩,. . . ,⟨t⟩} | Constr (⟨i⟩, ⟨t⟩) | Elim(⟨t⟩, ⟨t⟩){⟨t⟩,. . . ,⟨t⟩}

Figure 6. Syntax for CICω from Timany and Jacobs [39] with (from left to right) variables, sorts, dependent types, functions,
application, inductive types, inductive constructors, and primitive eliminators.

DepConstr(0, list T) : list T := Constr(0, list T).
DepConstr(1, list T) t l : list T :=
Constr (1, list T) t l.

DepElim(l, P) { pnil, pcons } : P l :=
Elim(l, P) { pnil, pcons }.

DepConstr(0, list T) : list T := Constr(1, list T).
DepConstr(1, list T) t l : list T :=
Constr(0, list T) t l.

DepElim(l, P) { pnil, pcons } : P l :=
Elim(l, P) { pcons, pnil }.

Figure 7. The dependent constructors and eliminators for old (left) and new (right) list, with the difference in orange.

the induction principle for list); this section assumes that
these eliminators are primitive.
The syntax for CICω with primitive eliminators is in Fig-

ure 6. The typing rules are standard. We assume inductive
types Σ with constructor ∃ and projections πl and πr , and
an equality type = with constructor eq_refl. We use ®t and
{t1, . . . , tn} to denote lists of terms.

4.1 The Configuration

The configuration is the key to building a proof term trans-
formation that implements transport in a way that is suitable
for repair. Each configuration corresponds to an equivalence
A ≃ B. It deconstructs the equivalence into things that talk
about A, and things that talk about B. It does so in a way
that hides details specific to the equivalence, like the order
or number of arguments to an induction principle or type.

At a high level, the configuration helps the transformation
achieve two goals: preserve equality up to transport across
the equivalence between A and B, and produce well-typed
terms. This configuration is a pair of pairs:

((DepConstr, DepElim), (Eta, Iota))

each of which corresponds to one of the two goals: DepConstr
and DepElim define how to transform constructors and elim-
inators, thereby preserving the equivalence, and Eta and
Iota define how to transform η-expansion and ι-reduction of
constructors and eliminators, thereby producing well-typed
terms. Each of these is defined in CICω for each equivalence.
Preserving the Equivalence. To preserve the equivalence,
the configuration ports terms over A to terms over B by
viewing each term of type B as if it is anA. This way, the rest
of the transformation can replace values of A with values of
B, and inductive proofs about A with inductive proofs about
B, all without changing the order or number of arguments.

The two configuration parts responsible for this are DepConstr
and DepElim (dependent constructors and eliminators). These
describe how to construct and eliminate A and B, wrapping
the types with a common inductive structure. The transfor-
mation requires the same number of dependent constructors
and cases in dependent eliminators for A and B, even if A

and B are types with different numbers of constructors (A
and B need not even be inductive; see Sections 4.3 and 7).

For the list change from Section 2, the configuration that
Pumpkin Pi discovers uses the dependent constructors and
eliminators in Figure 7. The dependent constructors for Old.
list are the normal constructors with the order unchanged,
while the dependent constructors for New.list swap con-
structors back to the original order. Similarly, the dependent
eliminator for Old.list is the normal eliminator for Old.list,
while the dependent eliminator for New.list swaps cases.

As the name hints, these constructors and eliminators can
be dependent. Consider the type of vectors of some length:
packed_vect T := Σ(n : nat).vector T n.

Pumpkin Pi can port proofs across the equivalence between
this type and list T 3 . The dependent constructors Pump-
kin Pi discovers pack the index into an existential, like:
DepConstr(0, packed_vect) : packed_vect T :=
∃ (Constr(0, nat)) (Constr(0, vector T)).

and the eliminator it discovers eliminates the projections:
DepElim(s, P) { f0 f1 } : P (∃ (πl s) (πr s)) :=
Elim(πr s, λ(n : nat)(v : vector T n).P (∃ n v)) {
f0,
(λ(t : T)(n : nat)(v : vector T n).f1 t (∃ n v))

}.

In both these examples, the interesting work moves into
the configuration: the configuration for the first swaps con-
structors and cases, and the configuration for the second
maps constructors and cases over list to constructors and
cases over packed_vect. That way, the transformation need
not add, drop, or reorder arguments. Furthermore, both ex-
amples use automatic configuration, so Pumpkin Pi’s Con-
figure component discovers DepConstr and DepElim from
just the types A and B, taking care of even the difficult work.
Producing Well-Typed Terms. The other configuration
parts Eta and Iota deal with producing well-typed terms,
in particular by transporting equalities. CICω distinguishes
between two important kinds of equality: those that hold by
reduction (definitional equality), and those that hold by proof
(propositional equality). That is, two terms t and t' of type

https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/examples/Example.v
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Inductive nat :=
| O : nat
| S : nat → nat.

Inductive positive :=
| xI : positive → positive
| xO : positive → positive
| xH : positive.

Inductive N :=
| N0 : N
| Npos : positive → N.

Figure 8. A unary natural number nat (left) is either zero (0)
or the successor of some other natural number (S). A binary
natural number N (right) is either zero (N0) or a positive binary
number (Npos), where a positive binary number is either 1
(xH), or the result of shifting left and adding 1 (xI) or 0 (xO).
Unary and binary natural numbers are equivalent, but have
different inductive structures. Consequentially, definitional
equalities over nat may become propositional over N.

T are definitionally equal if they reduce to the same normal
form, and propositionally equal if there is a proof that t = t'

using the inductive equality type = at type T. Definitionally
equal terms are necessarily propositionally equal, but the
converse is not in general true.

When a datatype changes, sometimes, definitional equali-
ties defined over the old version of that type must become
propositional. A naive proof term transformation may fail
to generate well-typed terms if it does not account for this.
Otherwise, if the transformation transforms a term t : T to
some t' : T', it does not necessarily transform T to T' [38].

Eta and Iota describe how to transport equalities. More
formally, they define η-expansion and ι-reduction of A and
B, which may be propositional rather than definitional, and
so must be explicit in the transformation. η-expansion de-
scribes how to expand a term to apply a constructor to an
eliminator in a way that preserves propositional equality,
and is important for defining dependent eliminators [26].
ι-reduction (β-reduction for inductive types) describes how
to reduce an elimination of a constructor [25].

The configuration for the change from list to packed_vect
has propositional Eta. It uses η-expansion for Σ:
Eta(packed_vect) := λ(s:packed_vect).∃ (πl s) (πr s).

which is propositional and not definitional in Coq. Thanks
to this, we can forego the assumption that our language has
primitive projections (definitional η for Σ).

Each Iota—one per constructor—describes and proves the
ι-reduction behavior of DepElim on the corresponding case.
This is needed, for example, to port proofs about unary num-
bers nat to proofs about binary numbers N (Figure 8). While
we can define DepConstr and DepElim to induce an equiva-
lence between them 5 , we run into trouble reasoning about
applications of DepElim, since proofs about nat that hold by
reflexivity do not necessarily hold by reflexivity over N. For
example, in Coq, while S (n + m) = S n + m holds by reflex-
ivity over nat, when we define + with DepElim over N, the
corresponding theorem over N does not hold by reflexivity.

To transform proofs about nat to proofs about N, we must
transform definitional ι-reduction over nat to propositional
ι-reduction over N. For our choice of DepConstr and DepElim,
ι-reduction is definitional over nat, since a proof of:

∀ P p0 pS n,
DepElim(DepConstr(1, nat) n, P) { p0, pS } =
pS n (DepElim(n, P) { p0, pS }).

holds by reflexivity. But ι for N is propositional, since the
corresponding theorem over N does not. Iota for nat in the
S case is a rewrite by the proof of the above, with type:

∀ P p0 pS n (Q: P (DepConstr(1, nat) n) → s),
Iota(1, nat, Q) :
Q (pS n (DepElim(n, P) { p0, pS })) →
Q (DepElim(DepConstr(1, nat) n, P) { p0, pS }).

and similarly for N 5 . The transformation replaces rewrites
by reflexivity over nat to rewrites by propositional equalities
over N, so that DepElim behaves the same over nat and N.

Taken together over bothA and B, Iota describes how the
inductive structures of A and B differ. The transformation
requires that DepElim overA and over B have the same struc-
ture as each other, so if A and B themselves have the same
inductive structure (if they are ornaments [22]), then if ι is
definitional for A, it will be possible to choose DepElim with
definitional ι for B. Otherwise, if A and B (like nat and N)
have different inductive structures, then definitional ι over
one would become propositional ι over the other.

4.2 The Proof Term Transformation

Figure 9 shows the proof term transformation Γ ⊢ t ⇑ t ′

that forms the core of Pumpkin Pi. The transformation is
parameterized over equivalent types A and B (Eqivalence)
as well as the configuration. It assumesη-expanded functions.
It implicitly constructs an updated context Γ′ in which to
interpret t ′, but this is not needed for computation.
The proof term transformation is (perhaps deceptively)

simple by design: it moves the bulk of the work into the
configuration, and represents the configuration explicitly.
Of course, typical proof terms in Coq do not apply these
configuration terms explicitly. Pumpkin Pi does some addi-
tional work using unification heuristics to get real proof terms
into this format before running the transformation. It then
runs the proof term transformation, which transports proofs
across the equivalence that corresponds to the configuration.
Unification Heuristics. The transformation does not fully
describe the search procedure for transforming terms that
Pumpkin Pi implements. Before running the transformation,
Pumpkin Pi unifies subterms with particularA (fixing param-
eters and indices), and with applications of configuration
terms over A. The transformation then transforms configu-
ration terms over A to configuration terms over B. Reducing
the result produces the output term defined over B.

https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/nonorn.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/nonorn.v
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Γ ⊢ t ⇑ t ′

Dep-Elim
Γ ⊢ a ⇑ b Γ ⊢ pa ⇑ pb Γ ⊢ ®fa ⇑ ®fb

Γ ⊢ DepElim(a, pa ) ®fa ⇑ DepElim(b, pb ) ®fb

Dep-Constr
Γ ⊢ ®ta ⇑ ®tb

Γ ⊢ DepConstr(j, A) ®ta ⇑ DepConstr(j, B) ®tb

Eta

Γ ⊢ Eta(A) ⇑ Eta(B)

Iota
Γ ⊢ qA ⇑ qB Γ ⊢ ®tA ⇑ ®tB

Γ ⊢ Iota(j, A, qA) ®tA ⇑ Iota(j, B, qB ) ®tB

Eqivalence

Γ ⊢ A ⇑ B

Constr
Γ ⊢ T ⇑ T ′ Γ ⊢ ®t ⇑ ®t ′

Γ ⊢ Constr(j, T ) ®t ⇑ Constr(j, T ′) ®t ′

Ind
Γ ⊢ T ⇑ T ′ Γ ⊢ ®C ⇑ ®C ′

Γ ⊢ Ind(Ty : T ) ®C ⇑ Ind(Ty : T ′) ®C ′

App
Γ ⊢ f ⇑ f ′ Γ ⊢ t ⇑ t ′

Γ ⊢ f t ⇑ f ′t ′

Elim
Γ ⊢ c ⇑ c ′ Γ ⊢ Q ⇑ Q ′ Γ ⊢ ®f ⇑ ®f ′

Γ ⊢ Elim(c,Q) ®f ⇑ Elim(c ′,Q ′) ®f ′

Lam
Γ ⊢ t ⇑ t ′ Γ ⊢ T ⇑ T ′ Γ, t : T ⊢ b ⇑ b ′

Γ ⊢ λ(t : T ).b ⇑ λ(t ′ : T ′).b ′

Prod
Γ ⊢ t ⇑ t ′ Γ ⊢ T ⇑ T ′ Γ, t : T ⊢ b ⇑ b ′

Γ ⊢ Π(t : T ).b ⇑ Π(t ′ : T ′).b ′

Var
v ∈ Vars

Γ ⊢ v ⇑ v

Figure 9. Transformation for transporting terms across A ≃ B with configuration ((DepConstr, DepElim), (Eta, Iota)).

(* 1: original term *)
λ (T : Type) (l m : Old.list T) .
Elim(l, λ(l: Old.list T).Old.list T → Old.list T)) {
(λ m . m),
(λ t _ IHl m . Constr(1, Old.list T) t (IHl m))

} m.

(* 2: after unifying with configuration *)
λ (T : Type) (l m : A) .
DepElim(l, λ(l: A).A → A)) {
(λ m . m)
(λ t _ IHl m . DepConstr(1, A) t (IHl m))

} m.

(* 4: reduced to final term *)
λ (T : Type) (l m : New.list T) .
Elim(l, λ(l: New.list T).New.list T → New.list T)) {
(λ t _ IHl m . Constr(0, New.list T) t (IHl m)),
(λ m . m)

} m.

(* 3: after transforming *)
λ (T : Type) (l m : B) .
DepElim(l, λ(l: B).B → B)) {
(λ m . m)
(λ t _ IHl m . DepConstr(1, B) t (IHl m))

} m.

Figure 10. Swapping cases of the append function, counterclockwise, the input term: 1) unmodified, 2) unified with the
configuration, 3) ported to the updated type, and 4) reduced to the output.

Figure 10 shows this with the list append function ++ from
Section 2. To update ++ (top left), Pumpkin Pi unifies Old

.list T with A, and Constr and Elim with DepConstr and
DepElim (bottom left). After unification, the transformation
recursively substitutes B for A, which moves DepConstr and
DepElim to construct and eliminate over the updated type
(bottom right). This reduces to a term with swapped con-
structors and cases over New.list T (top right).
In this case, unification is straightforward. This can be

more challenging when configuration terms are dependent.
This is especially pronounced with definitional Eta and Iota,
which typically are implicit (reduced) in real code. To handle
this, Pumpkin Pi implements custom unification heuristics for
each search procedure that unify subterms with applications
of configuration terms, and that instantiate parameters and
dependent indices in those subterms 6 . The transformation
in turn assumes that all existing parameters and indices are
determined and instantiated by the time it runs.

Pumpkin Pi falls back to Coq’s unification for manual con-
figuration and when these custom heuristics fail. When even
Coq’s unification is not enough, Pumpkin Pi relies on proof
engineers to provide hints in the form of annotations 5 .
Specifying a Correct Transformation. The implementa-
tion of this transformation in Pumpkin Pi produces a term
that Coq type checks, and so does not add to the trusted
computing base. As Pumpkin Pi is an engineering tool, there
is no need to formally prove the transformation correct,
though doing so would be satisfying. The goal of such a
proof would be to show that if Γ ⊢ t ⇑ t ′, then t and t ′ are
equal up to transport, and t ′ refers to B in place of A. The
key steps in this transformation that make this possible are
porting terms along the configuration (Dep-Constr, Dep-
Elim, Eta, and Iota). For metatheoretical reasons, without
additional axioms, a proof of this theorem in Coq can only
be approximated [37]. It would be possible to generate per-
transformation proofs of correctness, but this does not serve
an engineering need.

https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/automation/lift/liftconfig.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/nonorn.v
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section: ∀ (a : A), g (f a) = a.
retraction: ∀ (b : B), f (g b) = b.

constr_ok: ∀ j ®xA ®xB, ®xA ≡A≃B ®xB →
DepConstr(j, A) ®xA ≡A≃B DepConstr(j, B) ®xB.

elim_ok: ∀ a b PA PB ®fA ®fB,
a ≡A≃B b →
PA ≡(A→s)≃(B→s) PB →

∀ j, ®fA[j] ≡ξ (A,PA , j)≃ξ (B,PB , j)
®fB[j]→

DepElim(a, PA) ®fA ≡(Pa)≃(Pb) DepElim(b, PB) ®fA.

elim_eta(A): ∀ a P ®f , DepElim(a, P) ®f : P (Eta(A) a).
eta_ok(A): ∀ (a : A), Eta(A) a = a.

iota_ok(A): ∀ j P ®f ®x (Q: P(Eta(A) (DepConstr(j, A) ®x)) → s),
Iota(A, j, Q) :

Q (DepElim(DepConstr(j, A) ®x, P) ®f ) →
Q (rew ← eta_ok(A) (DepConstr(j, A) ®x) in

( ®f [j]. . .(DepElim(IH0, P) ®f ). . .(DepElim(IHn, P) ®f ). . .)).

Figure 11. Correctness criteria for a configuration to ensure that the transformation preserves equivalence (left) coherently
with equality (right, shown for A; B is similar). f and g are defined in text. s , ®f , ®x , and ®IH represent sorts, eliminator cases,
constructor arguments, and inductive hypotheses. ξ (A, P, j) is the type of DepElim(A, P) at DepConstr(j, A) (similarly for B).

4.3 Specifying Correct Configurations

Choosing a configuration necessarily depends in some way
on the proof engineer’s intentions: there can be infinitely
many equivalences that correspond to a change, only some of
which are useful (for example 7 , anyA is equivalent to unit

refined by A). And there can be many configurations that
correspond to an equivalence, some of which will produce
terms that are more useful or efficient than others (consider
DepElim converting through several intermediate types).
While we cannot control for intentions, we can specify

what it means for a chosen configuration to be correct: Fix a
configuration. Let f be the function that uses DepElim to elim-
inate A and DepConstr to construct B (g similar). Figure 11
specifies the correctness criteria for the configuration. These
criteria relate DepConstr, DepElim, Eta, and Iota in a way that
preserves equivalence coherently with equality.
Equivalence. To preserve the equivalence (Figure 11, left),
DepConstr and DepElim must form an equivalence (section
and retraction must hold for f and g). DepConstr over A
and B must be equal up to transport across that equivalence
(constr_ok), and similarly for DepElim (elim_ok). Intuitively,
constr_ok and elim_ok guarantee that the transformation
correctly transports dependent constructors and dependent
eliminators, as doing so will preserve equality up to transport
for those subterms. This makes it possible to avoid applying
f and g, instead porting terms from A directly to B.
Equality. To ensure coherence with equality (Figure 11,
right), Eta and Iota must prove η and ι. That is, Eta must
have the same definitional behavior as the dependent elim-
inator (elim_eta), and must behave like identity (eta_ok).
Each Iota must prove and rewrite along the simplification
(refolding [5]) behavior that corresponds to a case of the de-
pendent eliminator (iota_ok). This makes it possible for the
transformation to avoid applying section and retraction.
Correctness.With these correctness criteria for a configura-
tion, we get the completeness result (proven in Coq 8 ) that
every equivalence induces a configuration. We also obtain an
algorithm for the soundness result that every configuration

induces an equivalence. The algorithm to prove section is
as follows (retraction is similar): replace a with Eta(A)a by
eta_ok(A). Then, induct using DepElim over A. For each case
i , the proof obligation is to show that g (f a) is equal to a,
where a is DepConstr(A, i) applied to the non-inductive ar-
guments (by elim_eta(A)). Expand the right-hand side using
Iota(A, i), then expand it again using Iota(B, i) (destruc-
ting over each eta_ok to apply the corresponding Iota). The
result follows by definition of g and f, and by reflexivity.
Automatic Configuration. Pumpkin Pi implements four
search procedures for automatic configuration 6 . Three of
the four procedures are based on the search procedure from
Devoid [32], while the remaining procedure instantiates
the types A and B of a generic configuration that can be
defined inside of Coq directly. The algorithm above is essen-
tially what Configure uses to generate functions f and g for
these configurations 9 , and also generate proofs section

and retraction that these functions form an equivalence 10 .
To minimize dependencies, Pumpkin Pi does not produce
proofs of constr_ok and elim_ok directly, as stating these the-
orems cleanly would require either a special framework [37]
or a univalent type theory [40]. If the proof engineer wishes,
it is possible to prove these in individual cases 8 , but this is
not necessary in order to use Pumpkin Pi.

5 Decompiling Proof Terms to Tactics

Transform produces a proof term, while the proof engineer
typically writes and maintains proof scripts made up of tac-
tics.We improve usability thanks to the realization that, since
Coq’s proof term language Gallina is very structured, we
can decompile these Gallina terms to suggested Ltac proof
scripts for the proof engineer to maintain.

Decompile implements a prototype of this translation 11 :
it translates a proof term to a suggested proof script that
attempts to prove the same theorem the same way. Note that
this problem is not well defined: while there is always a proof
script that works (applying the proof term with the apply

tactic), the result is often qualitatively unreadable. This is the

https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/playground/refine_unit.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/playground/arbitrary.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/automation/lift/liftconfig.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/automation/search/search.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/automation/search/equivalence.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/playground/arbitrary.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/coq-plugin-lib/src/coq/decompiler/decompiler.ml
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⟨v⟩ ∈ Vars, ⟨t⟩ ∈ CICω

⟨p⟩ ::= intro ⟨v⟩ | rewrite ⟨t⟩ ⟨t⟩ | symmetry | apply ⟨t⟩ | induction ⟨t⟩ ⟨t⟩ { ⟨p⟩, . . . , ⟨p⟩ } | split { ⟨p⟩, ⟨p⟩ } | left | right | ⟨p⟩ . ⟨p⟩
Figure 12. Qtac syntax.

Γ ⊢ t ⇒ p
Intro

Γ, n : T ⊢ b ⇒ p

Γ ⊢ λ(n : T ).b ⇒ intro n. p

Symmetry
Γ ⊢ H ⇒ p

Γ ⊢ eq_sym H ⇒ symmetry. p

Split
Γ ⊢ l ⇒ p Γ ⊢ r ⇒ q

Γ ⊢ Constr(0, ∧) l r ⇒ split{p,q}.

Left
Γ ⊢ H ⇒ p

Γ ⊢ Constr(0, ∨) H ⇒ left. p

Right
Γ ⊢ H ⇒ p

Γ ⊢ Constr(1, ∨) H ⇒ right. p

Rewrite
Γ ⊢ H1 : x = y Γ ⊢ H2 ⇒ p

Γ ⊢ Elim(H1, P){x, H2, y} ⇒ symmetry. rewrite P H1. p

Induction
Γ ⊢ ®f ⇒ ®p

Γ ⊢ Elim(t, P) ®f ⇒ induction P t ®p

Apply
Γ ⊢ t ⇒ p

Γ ⊢ f t ⇒ apply f . p

Base

Γ ⊢ t ⇒ apply t

Figure 13. Qtac decompiler semantics.

baseline behavior to which the decompiler defaults. The goal
of the decompiler is to improve on that baseline as much as
possible, or else suggest a proof script that is close enough
to correct that the proof engineer can manually massage it
into something that works and is maintainable.

Decompile achieves this in two passes: The first pass
decompiles proof terms to proof scripts that use a predefined
set of tactics. The second pass improves on suggested tactics
by simplifying arguments, substituting tacticals, and using
hints like custom tactics and decision procedures.
First Pass: Basic Proof Scripts. The first pass takes Coq
terms and produces tactics in Ltac, the proof script language
for Coq. Ltac can be confusing to reason about, since Ltac
tactics can refer to Gallina terms, and the semantics of Ltac
depends both on the semantics of Gallina and on the imple-
mentation of proof search procedures written in OCaml. To
give a sense of how the first pass works without the clutter
of these details, we start by defining a mini decompiler that
implements a simplified version of the first pass. Section 6.2
explains how we scale this to the implementation.

The mini decompiler takes CICω terms and produces tac-
tics in a mini version of Ltac which we call Qtac. The syn-
tax for Qtac is in Figure 12. Qtac includes hypothesis intro-
duction (intro), rewriting (rewrite), symmetry of equality
(symmetry), application of a term to prove the goal (apply),
induction (induction), case splitting of conjunctions (split),
constructors of disjunctions (left and right), and composi-
tion (.). Unlike in Ltac, induction and rewrite take a motive
explicitly (rather than relying on unification), and apply cre-
ates a new subgoal for each function argument.
The semantics for the mini decompiler Γ ⊢ t ⇒ p are

in Figure 13 (assuming =, eq_sym, ∧, and ∨ are defined as
in Coq). As with the real decompiler, the mini decompiler
defaults to the proof script that applies the entire proof term
with apply (Base). Otherwise, it improves on that behavior

by recursing over the proof term and constructing a proof
script using a predefined set of tactics.

For the mini decompiler, this is straightforward: Lambda
terms become introduction (Intro). Applications of eq_sym
become symmetry of equality (Symmetry). Constructors of
conjunction and disjunction map to the respective tactics
(Split, Left, and Right). Applications of equality elimina-
tors compose symmetry (to orient the rewrite direction) with
rewrites (Rewrite), and all other applications of eliminators
become induction (Induction). The remaining applications
become apply tactics (Apply). In all cases, the decompiler
recurses, breaking into cases, until only the Base case holds.

While the mini decompiler is very simple, only a few small
changes are needed to move this to Coq. The generated proof
term of rev_app_distr from Section 2, for example, consists
only of induction, rewriting, simplification, and reflexivity
(solved by auto). Figure 14 shows the proof term for the base
case of rev_app_distr alongside the proof script that Pump-
kin Pi suggests. This script is fairly low-level and close to
the proof term, but it is already something that the proof en-
gineer can step through to understand, modify, and maintain.
There are few differences from themini decompiler needed to
produce this, for example handling of rewrites in both direc-
tions (eq_ind_r as opposed to eq_ind), simplifying rewrites,
and turning applications of eq_refl into reflexivity or auto.
Second Pass: Better Proof Scripts. The implementation of
Decompile first runs something similar to the mini decom-
piler, then modifies the suggested tactics to produce a more
natural proof script 11 . For example, it cancels out sequences
of intros and revert, inserts semicolons, and removes extra
arguments to apply and rewrite. It can also take tactics from
the proof engineer (like part of the old proof script) as hints,
then iteratively replace tactics with those hints, checking for
correctness. This makes it possible for suggested scripts to
include custom tactics and decision procedures.

https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/coq-plugin-lib/src/coq/decompiler/decompiler.ml
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fun (y0 : list A)1 =>
list_rect2 _ _ (fun a l H2 =>
eq_ind_r3 _ eq_refl4 (app_nil_r (rev l) (a::[]))3)
eq_refl5

y02

- intro y0.1 induction y0 as [a l H|].2

+ simpl. rewrite app_nil_r.3 auto.4

+ auto.5

Figure 14. Proof term (top) and decompiled proof script
(bottom) for the base case of rev_app_distr (Section 2), with
corresponding terms and tactics grouped by color & number.

6 Implementation

The transformation and mini decompiler abstract many of
the challenges of building a tool for proof engineers. This
section describes how we solved some of these challenges.

6.1 Implementing the Transformation

Termination.When a subterm unifies with a configuration
term, this suggests that Pumpkin Pi can transform the sub-
term, but it does not necessarily mean that it should. In some
cases, doing so would result in nontermination. For example,
if B is a refinement of A, then we can always run Eqiva-
lence over and over again, forever. We thus include some
simple termination checks in our code 12 .
Intent. Even when termination is guaranteed, whether to
transform a subterm depends on intent. That is, Pumpkin Pi
automates the case of porting every A to B, but proof engi-
neers sometimes wish to port only someAs to Bs. Pumpkin Pi
has some support for this using an interactive workflow 13 ,
with plans for automatic support in the future.
From CICω to Coq. The implementation 4 of the transfor-
mation handles language differences to scale from CICω to
Coq. We use the existing Preprocess [32] command to turn
pattern matching and fixpoints into eliminators. We handle
refolding of constants in constructors using DepConstr.
Reaching Real Proof Engineers.Many of our design de-
cisions in implementing Pumpkin Pi were informed by our
partnership with an industrial proof engineer (Section 7).
For example, the proof engineer rarely had the patience to
wait more than ten seconds for Pumpkin Pi to port a term, so
we implemented optional aggressive caching, even caching
intermediate subterms encountered while running the trans-
formation 14 . We also added a cache to tell Pumpkin Pi not
to δ -reduce certain terms 14 . With these caches, the proof
engineer found Pumpkin Pi efficient enough to use on a code
base with tens of thousands of lines of code and proof.

The experiences of proof engineers also inspired new fea-
tures. For example, we implemented a search procedure to
generate custom eliminators to help reason about types like
Σ(l : list T).length l = n by reasoning separately about

the projections 15 .We added informative error messages 22
to help the proof engineer distinguish between user errors
and bugs. These features helped with workflow integration.

6.2 Implementing the Decompiler

From Qtac to Ltac. The mini decompiler assumes more
predictable versions of rewrite and induction than those in
Coq. Decompile includes additional logic to reason about
these tactics 11 . For example, Qtac assumes that there is
only one rewrite direction. Ltac has two rewrite directions,
and so the decompiler infers the direction from the motive.
Qtac also assumes that both tactics take the inductive

motive explicitly, while in Coq, both tactics infer the mo-
tive automatically. Consequentially, Coq sometimes fails to
infer the correct motive. To handle induction, the decom-
piler strategically uses revert to manipulate the goal so that
Coq can better infer the motive. To handle rewrites, it uses
simpl to refold the goal before rewriting. Neither of these
approaches is guaranteed to work, so the proof engineer may
sometimes need to tweak the suggested proof script appro-
priately. Even if we pass Coq’s induction principle an explicit
motive, Coq still sometimes fails due to unrepresented as-
sumptions. Long term, using another tactic like change or
refine before applying these tactics may help with cases for
which Coq cannot infer the correct motive.
From CICω to Coq. Scaling the decompiler to Coq intro-
duces let bindings, which are generated by tactics like rewrite
in, apply in, and pose.Decompile implements 11 support
for rewrite in and apply in similarly to how it supports
rewrite and apply, except that it ensures that the unma-
nipulated hypothesis does not occur in the body of the let
expression, it swaps the direction of the rewrite, and it re-
curses into any generated subgoals. In all other cases, it uses
pose, a catch-all for let bindings.
Forfeiting Soundness.While there is a way to always pro-
duce a correct proof script, Decompile deliberately forfeits
soundness to suggest more useful tactics. For example, it
may suggest the induction tactic, but leave the step of mo-
tive inference to the proof engineer. In practice, we have
found these suggested tactics easier to work with (Section 7).
Note that in the case the suggested proof script is not quite
correct, it is still possible to use the generated proof term
directly.
Pretty Printing. After decompiling proof terms, Decom-

pile pretty prints the result 11 . Like the mini decompiler,
Decompile represents its output using a predefined gram-
mar of Ltac tactics, albeit one that is larger than Qtac, and
that also includes tacticals. It maintains the recursive proof
structure for formatting. Pumpkin Pi keeps all output terms
from Transform in the Coq environment in case the decom-
piler does not succeed. Once the proof engineer has the new
proof, she can remove the old one.

https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/automation/lift/liftrules.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/minimal_records.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/automation/lift/lift.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/cache/caching.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/cache/caching.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/automation/search/smartelim.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/lib/ornerrors.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/coq-plugin-lib/src/coq/decompiler/decompiler.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/coq-plugin-lib/src/coq/decompiler/decompiler.ml
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/src/coq-plugin-lib/src/coq/decompiler/decompiler.ml
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Class Config. Examples Sav. Repair Tools Search Tools

Algebraic Ornaments Auto List to Packed Vector, hs-to-coq 3 Pumpkin Pi, Devoid, UP Pumpkin Pi, Devoid
List to Packed Vector, Std. Library 16 Pumpkin Pi, Devoid, UP Pumpkin Pi, Devoid

Unpack Sigma Types Auto Vector of Particular Length, hs-to-coq 3 Pumpkin Pi, UP Pumpkin Pi
Tuples & Records Auto Simple Records 13 Pumpkin Pi, UP Pumpkin Pi

Parameterized Records 17 Pumpkin Pi, UP Pumpkin Pi
Industrial Use 18 Pumpkin Pi, UP Pumpkin Pi

Permute Constructors Auto List, Standard Library 1 Pumpkin Pi, UP Pumpkin Pi
Modifying a PL, REPLica Benchmark 1 Pumpkin Pi, UP Pumpkin Pi
Large Ambiguous Enum 1 Pumpkin Pi, UP Pumpkin Pi

Add new Constructors Mixed PL Extension, REPLica Benchmark 19 Pumpkin Pi Pumpkin Pi (partial)
Factor out Constructors Manual External Example 2 Pumpkin Pi, UP None
Permute Hypotheses Manual External Example 20 Pumpkin Pi, UP None
Change Ind. Structure Manual Unary to Binary, Classic Benchmark 5 Pumpkin Pi, Magaud None

Vector to Finite Set, External Example 21 Pumpkin Pi None
Table 1. Some changes using Pumpkin Pi (left to right): class of changes, kind of configuration, examples, whether using
Pumpkin Pi saved development time relative to reference manual repair attempts ( if yes, if comparable, if no), and
Coq tools we know of that support repair along (Repair) or automatic proof of (Search) the equivalence corresponding to each
example. Tools considered are Devoid [32], the Univalent Parametricity (UP) white-box transformation [38], and the tool from
Magaud and Bertot [21]. Pumpkin Pi is the only one that supports tactic suggestions. More nuanced comparisons to these and
more are in Section 8.

7 Case Studies: Pumpkin Pi Eight Ways

This section summarizes eight case studies using Pumpkin
Pi, corresponding to the eight rows in Table 1. These case
studies highlight Pumpkin Pi’s flexibility in handling diverse
scenarios, the success of automatic configuration for better
workflow integration, the preliminary success of the pro-
totype decompiler, and clear paths to better serving proof
engineers. Detailed walkthroughs are in the code.
AlgebraicOrnaments: Lists to PackedVectors.The trans-
formation in Pumpkin Pi is a generalization of the transfor-
mation from Devoid. Devoid supported proof reuse across
algebraic ornaments, which describe relations between two
inductive types, where one type is the other indexed by a
fold [22]. A standard example is the relation between a list
and a length-indexed vector (Figure 5).

Pumpkin Pi implements a search procedure for automatic
configuration of algebraic ornaments. The result is all func-
tionality from Devoid, plus tactic suggestions. In file 3 , we
used this to port functions and a proof from lists to vectors of
some length, since list T ≃ packed_vect T. The decompiler
helped us write proofs that we had found too hard to write
by hand, though the suggested tactics did need massaging.
Unpack Sigma Types: Vectors of Particular Lengths. In
the same file 3 , we then ported functions and proofs to vec-
tors of a particular length, like vector T n. Devoid had left
this step to the proof engineer.We supported this in Pumpkin
Pi by chaining the previous change with an automatic con-
figuration for unpacking sigma types. By composition, this
transported proofs across the equivalence from Section 3.

Two tricks helpedwithworkflow integration for this change:
1) have the search procedure view vector T n as Σ(v :

vector T m).n = m for some m, then let Pumpkin Pi instanti-
ate those equalities via unification heuristics, and 2) generate
a custom eliminator for combining list terms with length in-
variants. The resulting workflow works not just for lists and
vectors, but for any algebraic ornament, automating manual
effort from Devoid. The suggested tactics were helpful for
writing proofs that we had struggled with manually over
the course of days, but only after massaging. More effort is
needed to improve tactic suggestions for dependent types.
Tuples & Records: Industrial Use. An industrial proof en-
gineer at the company Galois has been using Pumpkin Pi in
proving correct an implementation of the TLS handshake
protocol. Galois had been using a custom solver-aided verifi-
cation language to prove correct C programs, but had found
that at times, the constraint solvers got stuck. They had built
a compiler that translates their language into Coq’s speci-
fication language Gallina, that way proof engineers could
finish stuck proofs interactively using Coq. However, due to
language differences, they had found the generated Gallina
programs and specifications difficult to work with.
The proof engineer used Pumpkin Pi to port the auto-

matically generated functions and specifications to more
human-readable functions and specifications, wrote Coq
proofs about those functions and specifications, then used
Pumpkin Pi to port those proofs back to proofs about the
original functions and specifications. So far, they have used
at least three automatic configurations, but they most of-
ten used an automatic configuration for porting compiler-
produced anonymous tuples to named records, as in file 18 .

https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/examples/Example.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/examples/ListToVect.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/examples/Example.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/minimal_records.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/more_records.v
https://github.com/Ptival/saw-core-coq/tree/dump-wip
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/playground/add_constr.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/playground/constr_refactor.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/playground/flip.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/nonorn.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/playground/fin.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/examples/Example.v
https://github.com/uwplse/pumpkin-pi/blob/silent/plugin/coq/examples/Example.v
https://github.com/Ptival/saw-core-coq/tree/dump-wip


PLDI ’21, June 20–25, 2021, Virtual, UK Talia Ringer, RanDair Porter, Nathaniel Yazdani, John Leo, and Dan Grossman

Inductive Term : Set :=
| Var : Identifier → Term
| Int : Z → Term
| Eq : Term → Term → Term
| Plus : Term → Term → Term
| Times : Term → Term → Term
| Minus : Term → Term → Term
| Choose : Identifier → Term → Term.

Inductive Term : Set :=
| Var : Identifier → Term
| Bool : Identifier → Term
| Eq : Term → Term → Term
| Int : Z → Term
| Plus : Term → Term → Term
| Times : Term → Term → Term
| Minus : Term → Term → Term
| Choose : Identifier → Term → Term.

Figure 15. A simple language (left) and the same language with two swapped constructors and an added constructor (right).

The workflow was a bit nonstandard, so there was little need
for tactic suggestions. The proof engineer reported an initial
time investment learning how to use Pumpkin Pi, followed
by later returns.
PermuteConstructors:Modifying a Language.The swap-
ping example from Section 2 was inspired by benchmarks
from the Replica user study of proof engineers [30]. A
change from one of the benchmarks is in Figure 15. The
proof engineer had a simple language represented by an
inductive type Term, as well as some definitions and proofs
about the language. The proof engineer swapped two con-
structors in the language, and added a new constructor Bool.

This case study and the next case study break this change
into two parts. In the first part, we used Pumpkin Pi with
automatic configuration to repair functions and proofs about
the language after swapping the constructors 1 . With a bit
of human guidance to choose the permutation from a list
of suggestions, Pumpkin Pi repaired everything, though the
original tactics would have also worked, so there was not a
difference in development time.
Add newConstructors: Extending a Language.We then
used Pumpkin Pi to repair functions after adding the new
constructor in Figure 15, separating out the proof obliga-
tions for the new constructor from the old terms 19 . This
change combined manual and automatic configuration. We
defined an inductive type Diff and (using partial automation)
a configuration to port the terms across the equivalence Old.
Term + Diff ≃ New.Term. This resulted in case explosion, but
was formulaic, and pointed to a clear path for automation
of this class of changes. The repaired functions guaranteed
preservation of the behavior of the original functions.
Adding constructors was less simple than swapping. For

example, Pumpkin Pi did not yet save us time over the proof
engineer from the user study; fully automating the configura-
tionwould have helped significantly. In addition, the repaired
terms were (unlike in the swap case) inefficient compared to
human-written terms. For now, they make good regression
tests for the human-written terms—in the future, we hope
to automate the discovery of the more efficient terms, or
use the refinement framework CoqEAL [8] to get between
proofs of the inefficient and efficient terms.

Factor out Constructors: External Example. The change
from Figure 4 came at the request of a non-author. We sup-
ported this using a manual configuration that described
which constructor to map to true and which constructor
to map to false 2 . The configuration was very simple for
us to write, and the repaired tactics were immediately useful.
The development time savings were on the order of minutes.
Permute Hypotheses: External Example. The change in
20 came at the request of a different non-author (a cubical
type theory expert), and shows how to use Pumpkin Pi to
swap two hypotheses of a type, since T1→ T2→ T3 ≃ T2→

T1→ T3. This configuration was manual. Since neither type
was inductive, this change used the generic construction for
any equivalence. This worked well, but necessitated some
manual annotation due to the lack of custom unification
heuristics for manual configuration, and so did not yet save
development time. Supporting custom unification heuristics
would improve this workflow.
Change Inductive Structure: Unary to Binary. In 5 , we
used Pumpkin Pi to support a classic example of changing
inductive structure: updating unary to binary numbers, as in
Figure 8. Binary numbers allow for a fast addition function,
found in the Coq standard library. In the style of Magaud
and Bertot [21], we used Pumpkin Pi to derive a slow binary
addition function that does not refer to nat, and to port proofs
from unary to slow binary addition. We then showed that
the ported theorems hold over fast binary addition.

The configuration for N used definitions from the Coq stan-
dard library for DepConstr and DepElim that had the desired
behavior with no changes. Iota over the successor case was
a rewrite by a lemma from the standard library that reduced
the successor case of the eliminator that we used for DepElim:

N.peano_rect_succ : ∀ P pO pS n,
N.peano_rect P pO pS (N.succ n) =
pS n (N.peano_rect P pO pS n).

The need for nontrivial Iota comes from the fact that N and
nat have different inductive structures. By writing a man-
ual configuration with this Iota, it was possible for us to
implement this transformation that had been its own tool.
While porting addition from nat to N was automatic af-

ter configuring Pumpkin Pi, porting proofs about addition
took more work. Due to the lack of unification heuristics for

https://github.com/uwplse/pumpkin-pi/blob/master/plugin/coq/Swap.v
https://github.com/uwplse/pumpkin-pi/blob/master/plugin/coq/playground/add_constr.v
https://github.com/uwplse/pumpkin-pi/blob/master/plugin/coq/playground/constr_refactor.v
https://github.com/uwplse/pumpkin-pi/blob/master/plugin/coq/playground/flip.v
https://github.com/uwplse/pumpkin-pi/blob/master/plugin/coq/nonorn.v
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manual configuration, we had to annotate the proof term to
tell Pumpkin Pi that implicit casts in the inductive cases of
proofs were applications of Iota over nat. These annotations
were formulaic, but tricky to write. Unification heuristics
would go a long way toward improving the workflow.

After annotating, we obtained automatically repaired proofs
about slow binary addition, which we found simple to port
to fast binary addition. We hope to automate this last step
in the future using CoqEAL. Repaired tactics were partially
useful, but failed to understand custom eliminators like N.

peano_rect, and to generate useful tactics for applications
of Iota; both of these are clear paths to more useful tactics.
The development time for this proof with Pumpkin Pi was
comparable to reference manual repairs by external proof
engineers. Custom unification heuristics would help bring
returns on investment for experts in this use case.

8 Related Work

Proof Repair. The search procedures in Configure are
based partly on ideas from the original Pumpkin Patch pro-
totype [31]. The Pumpkin Patch prototype did not apply the
patches that it finds, handle changes in structure, or include
support for tactics beyond the use of hints.

Proof repair can be viewed as a form of program repair [14,
23] for proof assistants. Proof assistants like Coq are a good
fit for program repair: A recent paper [28] recommends that
program repair tools draw on extra information such as
specifications or example patches. In Coq, specifications and
examples are rich and widely available: specifications thanks
to dependent types, and examples thanks to constructivism.
Proof Refactoring. The proof refactoring tool Levity [4]
for Isabelle/HOL has seen large-scale industrial use. Levity
focuses on a different task: moving lemmas. Chick [33] and
RefactorAgda [43] are proof refactoring tools in a Gallina-
like language and in Agda, respectively. These tools support
primarily syntactic changes and do not have tactic support.

A few proof refactoring tools operate directly over tactics:
POLAR [13] refactors proof scripts in languages based on
Isabelle/Isar [41], CoqPIE [34] is an IDE with support for
simple refactorings of Ltac scripts, and Tactician [1] is a
refactoring tool for switching between tactics and tacticals.
This approach is not tractable for more complex changes [33].
Proof Reuse. A few proof reuse tools work by proof term
transformation and so can be used for repair. Johnsen and
Lüth [17] describes a transformation that generalizes theo-
rems in Isabelle/HOL. Pumpkin Pi generalizes the transfor-
mation from Devoid [32], which transformed proofs along
algebraic ornaments [22]. Magaud and Bertot [21] imple-
ment a proof term transformation between unary and binary
numbers. Both of these fit into Pumpkin Pi configurations,
and none implements tactic support in Coq like Pumpkin
Pi does. The expansion algorithm from Magaud and Bertot

[21] may help guide the design of unification heuristics for
Iota in Pumpkin Pi.
The widely used Transfer [16] package supports proof

reuse in Isabelle/HOL. Transfer works by combining a set
of extensible transfer rules with a type inference algorithm.
Transfer is not yet suitable for repair, as it necessitates main-
taining references to both datatypes. One possible path to-
ward implementing proof repair in Isabelle/HOL may be to
reify proof terms using something like Isabelle/HOL-Proofs,
apply a transformation based on Transfer, and then (as in
Pumpkin Pi) decompile those terms to automation that does
not apply Transfer or refer to the old datatype in any way.

CoqEAL [8] transforms functions across relations in Coq,
and these relations can be more general than Pumpkin Pi’s
equivalences. However, while Pumpkin Pi supports both
functions and proofs, CoqEAL supports only simple func-
tions due to the problem that Iota addresses. CoqEAL may
be most useful to chain with Pumpkin Pi to get faster func-
tions. Both CoqEAL and recent ornaments work [44] may
help with better workflow support for changes that do not
correspond to equivalences.
The Pumpkin Pi transformation implements transport.

Transport is realizable as a function given univalence [40].
UP [37] approximates it in Coq, only sometimes relying on
functional extensionality. While powerful, neither approach
removes references to the old type.

Recent work [38] extends UPwith a white-box transforma-
tion that may work for repair. This imposes proof obligations
on the proof engineer beyond those imposed by Pumpkin Pi,
and it includes neither search procedures for equivalences
nor tactic script generation. It also does not support changes
in inductive structure, instead relying on its original black-
box functionality; Iota solves this in Pumpkin Pi. The most
fruitful progress may come from combining these tools.
Proof Design.Muchwork focuses on designing proofs to be
robust to change, rather than fixing broken proofs. This can
take the form of design principles, like using information
hiding techniques [19, 45] or any of the structures [7, 35,
36] for encoding interfaces in Coq. Design and repair are
complementary: design requires foresight, while repair can
occur retroactively. Repair can help with changes that occur
outside of the proof engineer’s control, or with changes that
are difficult to protect against even with informed design.

Another approach to this is to use heavy proof automation,
for example through program-specific proof automation [6]
or general-purpose hammers [3, 11, 18, 27]. The degree to
which proof engineers rely on automation varies, as seen
in the data from a user study [30]. Automation-heavy proof
engineering styles localize the burden of change to the au-
tomation, but can result in terms that are large and slow to
type check, and tactics that can be difficult to debug. While
these approaches are complementary, more work is needed
for Pumpkin Pi to better support developments in this style.
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9 Conclusions & Future Work

We combined search procedures for equivalences, a proof
term transformation, and a proof term to tactic decompiler to
build Pumpkin Pi, a proof repair tool for changes in datatypes.
The proof term transformation implements transport across
equivalences in a way that is suitable for repair and that does
not compromise definitional equality. The resulting tool is
flexible and useful for real proof engineering scenarios.
Future Work.Moving forward, our goal is to make proofs
easier to repair and reuse regardless of proof engineering
expertise and style. We want to reach more proof engineers,
and we want Pumpkin Pi to integrate seamlessly with Coq.

Three problems that we encountered scaling up the Pump-
kin Pi transformation were lack of type-directed search, ad
hoc termination checks, and inability for proof engineers to
add custom unification heuristics. We hope to solve these
challenges using e-graphs [24], a data structure for manag-
ing equivalences built with these kinds of problems in mind.
E-graphs were recently adapted to express path equality in
cubical [15]; we hope to repurpose this insight.
Beyond that, we believe that the biggest gains will come

from continuing to improve the prototype decompiler. Two
helpful features would be preserving indentation and com-
ments, and automatically using information from the origi-
nal proof script rather than asking for hints. One promising
path toward the latter is to integrate the decompiler with a
machine learning tool to rank tactic hints. Some improve-
ments could also come from better tactics, or from a more
structured tactic language. Integration with version control
systems or with integrated development environments could
also help. With that, we believe that the future of seamless
and powerful proof repair and reuse for all is within reach.
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